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Abstract
Causal inference with observational data frequently relies on the notion of the propensity score
(PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of
“big data” are increasingly reliant on large and complex collections of digital data, researchers are
frequently confronted with decisions regarding which of a high-dimensional covariate set to
include in the PS model in order to satisfy the assumptions necessary for estimating average causal
effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without
acknowledging the uncertainty associated with the model selection. We propose three Bayesian
methods for PS variable selection and model averaging that 1) select relevant variables from a set
of candidate variables to include in the PS model and 2) estimate causal treatment effects as
weighted averages of estimates under different PS models. The associated weight for each PS
model reflects the data-driven support for that model’s ability to adjust for the necessary variables.
We illustrate features of our proposed approaches with a simulation study, and ultimately use our
methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors
among 2,606 Medicare beneficiaries. Supplementary materials are available online.
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1 INTRODUCTION
Causal inference with observational data frequently relies on methods based on the
propensity score (PS) (Rosenbaum and Rubin, 1983), as these methods are designed to
estimate causal treatment effects by adjusting for observed confounding factors. PS methods
typically unfold in two stages; first, a model is fit to estimate the probability of assignment
to treatment (the estimated PS), and then outcomes of interest are compared between treated
and untreated units having similar values of the estimated PS. As with all methods for
making causal inferences with observational data, PS methods require that the researcher
specify the confounders necessary to satisfy the assumption of strong ignorability (i.e., the
“no unmeasured confounding” assumption), rendering correct specification of the PS model
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of vital importance. However, the correct set of variables to include in the PS model is rarely
known, and researchers in the modern era of “big data” are increasingly confronted with
decisions regarding which of many covariates to include in the PS. Such is often the case
when, for example, large administrative data bases are used to compare the effectiveness of
medical therapies as they are employed in routine clinical practice.

One recommendation for choosing a PS model is to simply include every available
covariate. Aside from the efficiency sacrificed by the inclusion of possibly extraneous
variables, this “kitchen sink” approach is becoming increasingly untenable as PS methods
are deployed in high-dimensional data settings. In attempt to include only a subset of
relevant variables in the PS model, researchers often combine expert knowledge with
traditional or ad-hoc procedures to select variables that are predictive of treatment
assignment (Austin, 2008). Methods targeting the subset of variables that best predicts
treatment assignment have noted drawbacks in terms of efficiency and finite-sample bias. In
fact, the target set of variables to include in the PS model should also take into account how
covariates are related the outcome (Rubin and Thomas, 1996; Rubin, 1997; Brookhart et al.,
2006). Despite disagreement about whether data-driven approaches to select the PS model
should incorporate information in the outcome (Rubin, 2008), the purported benefit of
including important outcome predictors has spawned data-driven methods to do so, such as
the reasoned algorithmic approach of Schneeweiss et al. (2009).

Regardless of the exact procedure used, current methods for selecting PS models fail to
account for the uncertainty in the selection, and have never been considered within a
Bayesian framework. Once a researcher arrives at a particular PS model, all subsequent
inference conditions on this single model. The lack of methods to formally acknowledge the
uncertainty in PS model selection is an important barrier to tailoring PS methods to modern
research priorities such as the Big Data Research and Development Initiative put forth by
the United States government. To acknowledge the inherent uncertainty in the specification
of the PS model, we propose three Bayesian procedures for PS models that 1) select relevant
variables from a (potentially large) set of candidate variables to include in the PS and 2)
estimate causal treatment effects as weighted averages of estimates under different PS
models. One vital feature of our approach is that the associated weight for each PS model
reflects the data-driven support for that model’s ability to adjust for the desired variables.
Thus, our methods account for the uncertainty associated with what is arguably the most
important choice in a PS analysis: the choice of which variables to include in the PS.

Our proposed methodology has important points of contact with the recently proposed
method for “Bayesian Adjustment for Confounding” (BAC), which Wang et al. (2012)
introduce as a means for selecting variables to include in a regression model based on
associations with both an exposure and an outcome. Although Wang et al. (2012) do not
explicitly consider the PS, discussions of that work pointed towards similar notions of
Bayesian confounder selection in PS models (McCandless, 2012; Vansteelandt, 2012),
which we explore in detail here. In founding our approach from a Bayesian perspective, our
methodology is a continuation of recent work investigating Bayesian PS estimation based on
a single joint likelihood representing both the PS and outcome models simultaneously
(McCandless et al., 2009; Zigler et al., 2013), which is distinct from traditional sequential
PS approaches that first estimate the PS model to obtain the estimated PS, then treat these
estimated quantities as fixed and known for estimation of the outcome model.

Section 2 of this paper reviews PS methods and draws distinctions between traditional
sequential and joint Bayesian estimation. Section 3 outlines three related approaches for
Bayesian variable selection and model averaging for PS methods. Section 4 presents a
simulation study to illustrate the key features of our proposed approaches. Section 5
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compares the effectiveness of surgical vs. nonsurgical treatment for malignant brain tumors
among 2,606 Medicare beneficiaries. We conclude with a discussion.

2 BAYESIAN PROPENSITY SCORE ESTIMATION
In this section, we briefly review the motivation for PS methods and summarize joint
Bayesian PS estimation as distinct from traditional sequential procedures. We consider
likelihood-based methods that estimate causal effects with a model for the outcome that
adjusts for the PS.

2.1 Estimating Causal Effects with Propensity Scores
For the ith observational unit, denote the binary treatment with Xi = 0, 1, the outcome of
interest with Yi, and a vector of p measured pre-treatment covariates with Ui = (Ui1,Ui2, …,
Uip). Rosenbaum and Rubin (1983) defined the PS as the conditional probability of
assignment to treatment X = 1, given U, and illustrated that the PS enjoys the properties of a
balancing score in that, conditional on the PS, the individual covariates are orthogonal to the
treatment indicator: X ╨ U|PS. The balancing property of the PS combined with the
assumption of strongly ignorable treatment assignment (i.e., that there are no unmeasured
confounders) implies that outcome comparisons between treated and untreated units with the
same value of the PS represent estimates of average causal effects (Rosenbaum and Rubin,
1983). One salient benefit of estimating causal effects in this manner is that it does not
necessarily rely on a detailed parametric model for the outcome. Rather, covariate
information is condensed into a scalar quantity (the PS), adjustment for which can recover
causal estimates without strong parametric assumptions pertaining to how covariates relate
to Y.

2.2 Models for Propensity Score Estimation and the Average Causal Effect
Typically, the PS, defined as E[X|U], is estimated with a model for the relationship between
X and U, which we represent with the generalized linear model:

(1)

where we define Ui0 ≡ 1 for all i to denote a model intercept. Here, γk (k ≥ 1) represents the
coefficient describing the association between Uk and the probability of treatment
assignment to X = 1, and gx(·) is a link function. An individual PS model is denoted with a

particular value of the vector α, denoted , where each 
represents whether Uk is or is not included in the mth PS model. Throughout, we fix α0 = 1
to force the inclusion of a model intercept. For brevity, we refer to a particular αm as a
particular model, and say that Uk with  are variables included in model αm. In general,
a particular Uk could represent a derived function such as an interaction or higher order
polynomial term.

Estimating causal effects with the PS often relies on a model for the outcome, conditional on
the PS. While models for general outcome types are permitted, we simplify notation by
considering only generalized linear models for binary outcomes of the form:

(2)
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where Yi = 0, 1, gy(·) is a link function, and the notation PS(γ,α,Ui) explicates that the PS for

the ith unit is a deterministic function of (γ,α,Ui), that is, . For
this outcome model, βX represents the conditional treatment effect at a given value of the PS,
and treatment-by-PS interactions could be included. The function h(PS(γ,α,Ui);ξ) denotes
how the PS enters the outcome model depending on unknown parameters ξ, and the
ΣαkδkUik represents residual adjustment for individual covariates in addition to the PS. Note
that the PS(γ,α,U) and the residual adjustment term ΣαkδkUik depend on the same α,
implying that, for a given αm, the PS is comprised of the variables in αm, and residual
adjustment for an individual Uk is conducted in the outcome model if and only if that
variable is included in αm. For example, h(PS(γ,α,Ui);ξ) could denote dummy variables
indicating membership in subclasses defined by quantiles of the PS, with ΣαkδkUik denoting
linear adjustment for each covariate included in the PS. We detail the rationale for including
the residual adjustment ΣαkδkUik in subsequent sections, but note here that this strategy is
akin to doubly robust procedures that will estimate causal effects if either the PS model or
the residual adjustment is correctly specified (Little and An, 2004; Bang and Robins, 2005).

Upon specification of the U required to satisfy the assumption of strongly ignorable
treatment assignment, the average causal effect (ACE) is defined as Δ = EU{E[Y|X = 1,U]
−E[Y|X = 0,U]}, which, provided that α contains the necessary U, can be obtained by
calculating the average differences between the predicted values from model (2) with X set
to 1 and the analogous predicted values with X set to 0. We revisit the implications of
estimating the ACE under different values of α in Section 3.

2.3 Joint Bayesian PS Estimation
Traditional PS estimation is carried out sequentially in the sense that the researcher first
specifies the variables to include in the PS (i.e., sets α = α0) and estimates γ from (1). Then,
the selected α0, the estimated γ̂, and implied estimated PS are used for estimation of (2), that
is, estimation of causal effects is based on

. Several limitations of this
sequential approach have been noted, including the misstatement of uncertainty due to
treating γ̂ (and hence, the estimated PS) as fixed and known in the outcome model, when
these quantities are in fact estimated with error (Gelman and Hill, 2007). More pertinent to
model uncertainty, the decision regarding which variables to include in the PS (i.e., setting α
= α0) is made in the first stage and also treated as fixed in the second stage.

In contrast to sequential methods, joint Bayesian methods have been recently introduced to
estimate causal effects with a pre-specified α = α0 (McCandless et al., 2009; Zigler et al.,
2013). Extending these methods to settings with unknown α, joint Bayesian inference relies
on the following likelihood that simultaneously considers quantities in the PS and outcome
models:

(3)

(4)

where, here and throughout, boldface represents vectors and matrices for the entire sample
of n units. This likelihood, coupled with a prior distribution p(γ,α,β,ξ,δ) serves as the basis
for joint Bayesian estimation of causal effects. One key feature of joint Bayesian estimation
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with the likelihood in (3)–(4) is that the α and γ determining the PS are treated as unknown
quantities, uncertainty about which is integrated out of posterior distributions of causal
effects. Not only does this propagate uncertainty regarding the variables contained in the PS
model and the estimates of the PS themselves, but it also allows information from the
outcome model to contribute to the PS model.

2.4 Model Feedback
Note that some parameters (namely, γ and α) appear in both term (3) and term (4) of the
above likelihood. As a result, posterior distributions of these parameters depend on both the
PS and outcome models, a phenomenon referred to as “feedback” because quantities in the
outcome model will indirectly inform quantities in the PS model. With the likelihood in (3)–
(4), there are two distinct sources of feedback. The first relates to the appearance of γ in both
terms of the likelihood, meaning that Y and other quantities in the outcome model inform
estimation of γ and hence, the PS. This type of feedback, which we refer to here as γ-
feedback, has been previously considered when α is fixed and known, and was shown to be
potentially detrimental to PS estimation (Zigler et al., 2013). Specifically, Zigler et al.
(2013) show that, conditional on any model α, γ-feedback from the outcome model into the
PS model can distort the balancing-score property of the PS and yield biased estimates of
causal effects. Zigler et al. (2013) also show that one way to prevent distortion of the PS is
to conduct residual adjustment for every covariate that appears in the PS model. In other
words, when conducting joint Bayesian PS estimation, we specify the outcome model (2) to
include residual adjustment via ΣαkδkUik.

The inclusion of the parameter α in terms (3) and (4) of the likelihood leads to another
source of feedback. We refer to this feedback as α-feedback which, in principle, will allow
variable selection to be conducted based jointly on covariate associations with X and with Y.
The use of α-feedback to select variables based on associations with both X and Y is an
important departure from traditional PS approaches. Note here that α feedback would occur
even without residual adjustment with ΣαkδkUik because α implicitly appears in the outcome
model via h(PS(γ,α,Ui);ξ).

Either source of feedback could also be “cut” by conducting an approximately-Bayesian
analysis that still uses the likelihood in (3)–(4), but updates some parameters from
conditional posterior distributions that exclude some terms of the likelihood and prior
distributions (Lunn et al., 2009; Liu et al., 2009). For example, updating α from p(α|X,U,γ)
would “cut the feedback” between the outcome model and the selection of variables. We
detail one such approximately-Bayesian approach in Section 3.2.

3 BAYESIAN VARIABLE SELECTION AND MODEL AVERAGING FOR
PROPENSITY SCORES

As alluded to in Section 2.2, the introduction of the parameter α denoting whether each
variable is included in the PS model reflects the model uncertainty. Essentially, by adding
the parameter α, we can estimate the causal treatment effect as a weighted average over
different PS and outcome models, with weights corresponding to data-driven support of
whether each variable should or should not be included for adjustment (Hoeting et al.,
1999).

More formally, let ℳ denote the set of all models being considered, which, for our

purposes, will consist of the M = 2p possible values of  (recall α0
is fixed to 1). With prior probability of model m denoted as p(αm), the posterior probability
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of model m is . Our goal is estimation of the average
causal effect of treatment with X = 1 vs. treatment with X = 0, making our target for
inference the posterior distribution of the ACE, which will be a weighted average of
estimates of Δ under each model in ℳ, with weights corresponding to the posterior
probability of each model:

(5)

where Δα
m

 = EUαm{E[Y|X = 1,Uαm]−E[Y|X = 0,Uαm]} and Uαm denotes the subset of U in
αm. Note that Δα

m
 will not necessarily share the same interpretation as the causal effect Δ,

resulting in the approximation in (5). The key issue for interpreting Δα
m

 as an estimate of the
causal effect pertains to whether αm contains the confounders necessary to satisfy the
assumption of strong ignorability; failure to include even one confounder would result in a
Δα

m
 that does not share the causal interpretation of Δ. In theory, there exists some minimal

model, α*, that is sufficient for satisfying the assumption of strong ignorability and
interpreting Δα*as the causal estimate. Adding variables to α* will not alter this causal
interpretation. We treat α* as unknown, assuming only that it is comprised of a subset of the
p variables available for analysis. The motivation for using (5) for estimating causal effects
is that the procedures outlined below assign posterior weights, p(αm|Data), based jointly on
covariate associations with X and Y or on covariate associations with X only. This
approximates the true posterior distribution of Δ by distributing most posterior weight to
models containing α*. Similar reasoning motivates the BAC method of Wang et al. (2012).

In practice, evaluation of each model’s posterior probability may be infeasible for all M
models under consideration (e.g., p = 20 implies over 1 million models). In such cases,
Markov chain Monte Carlo (MCMC) algorithms that sample from the joint posterior of
p(α,Δ|Data) have been developed to estimate quantities such as that in (5) by visiting only
the models with non negligible posterior support from the data (Hoeting et al., 1999; George
and McCulloch, 1997). We explore two such methods in this article: the MCMC Model
Composition (MC3) approach of Madigan et al. (1995) and the stochastic search variable
selection (SSVS) method of George and McCulloch (1997). Throughout, we assume equal
prior probability for all M models.

3.1 Bayesian PS Model-Averaged Causal Effects with MC3

Given a current value for αm, the MC3 method constructs an MCMC chain that iteratively
visits “neighboring” models by either adding or removing a single variable from αm to

obtain α′, then moving the chain by setting α = α′ with probability 
and estimating Δα (Madigan et al., 1995; Raftery et al., 1997). One key necessity for this
approach is an available expression for p(αm|Data), which requires an analytically-tractable
expression for the integrated likelihood: p(Data|αm) = ∫ p(Data|αm,θ)p(θ|αm)dθ, where θ
here represents the collection of all parameters for which presence or absence in the model
depends on α (e.g., θ = (γ,δ) in (3)–(4)). While the integrated likelihood is readily available
for some standard problems (e.g., linear regression), it will only be available in closed form
for the PS likelihood in (3)–(4) under specific parametric assumptions, which is illustrated in
Appendix A.2. In particular, for fully-Bayesian estimation with MC3, we assume:

i. gx(·) and gy(·) are both Φ−1 representing Probit regression in both the PS and the
outcome models.
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ii. h(PS(γ,α,Ui);ξ) = ξ × ΣαkγkUik, that is, the outcome model in (2) adjusts for
Φ−1(PS) as a linear covariate.

iii. Residual adjustment via ΣαkδkUik is included with one variable having αk = 1
removed to prevent perfect colinearity with the PS.

Incorporating these assumptions into the likelihood as expressed in (3)–(4) essentially
negates one integral feature using the PS to adjust for confounding. Specifically,
assumptions (ii) and (iii) yield an outcome model that is a simple reparameterization of a
model containing a linear main effect term for every variable in α but not the propensity
score. This is shown in Appendix A, along with details of the prior specification and
complete MCMC algorithm.

Conducting the above MC3 procedure is operationally a PS approach in that it relies on
specification of a PS model and outcome model with (3)–(4), but the restrictive parametric
model implied by assumptions (i) – (iii) is a Probit regression with only main effect terms
for each covariate; precisely the type of model that PS methods are typically used to avoid.
Nonetheless, this strategy will be useful for illustrating (via simulation studies in Section 4)
the salient issues involved in selecting variables for PS models.

3.2 Approximately-Bayesian PS Model-Averaged Causal Effects with MC3

Altering the MC3 approach of Section 3.1 to allow more flexible model specifications can be
accomplished with an approximately-Bayesian analysis of the likelihood in (3) – (4) by
“cutting the feedback” (or modularizing) the PS and outcome models (Lunn et al., 2009; Liu
et al., 2009). Specifically, we propose an approximately-Bayesian MC3 approach, where, at

each MCMC iteration, the ratio  governing acceptance of a move between
models is obtained without regard to Y, as are updates of γ and the PS. Then, (β,ξ,δ) are
simulated conditional on α and the PS, which only involves term (4) of the likelihood and
the relevant prior distributions. Full details of the approximately-Bayesian method appear in
the Appendix A.4. The key benefit of this approach is that the integrated likelihood used to

calculate  only involves integration over quantities in the PS model, and, for
Probit regression, this integration can be easily evaluated without assumptions (ii) and (iii)
that were required for the fully-Bayesian MC3 approach in Section 3.1. The absence of γ-
feedback in the approximately-Bayesian method also allows omission of residual adjustment
term ΣαkδkUik from (2), if desired. However, the flexibility gained by cutting feedback
between the PS and outcome model comes at the cost of foregoing the use of Y to inform the
selection of α, meaning that inclusion of variables in the PS model is only informed by
associations with X.

3.3 Bayesian PS Model-Averaged Causal Effects with SSVS
In contrast to the fully-Bayesian method of Section 3.1 that entails restrictive parametric
assumptions and the approximately-Bayesian approach in Section 3.2 that precludes Y from
informing the PS model, we also propose a fully-Bayesian SSVS approach with so-called
“spike-and-slab” hierarchical mixture priors for the coefficients in the PS and outcome
models (George and McCulloch, 1997). This strategy reformulates the expressions in (1)
and (2) to yield the following:

(6)
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(7)

(8)

(9)

for k = 0,1, …, p, where are hyperparameters chosen to reflect proper but
noninformative prior distributions for (γk,δk) with αk = 1 (the “slab”), and (cγ,cδ) are
hyperparameters chosen to concentrate prior mass very tightly around zero for (γk,δk) with
αk = 0 (the “spike”). Rather than completely remove variables from the model when αk = 0,
the SSVS approach shrinks coefficients very close to zero. Note that the PS setting involves
the unique feature that the mixture priors are specified for two sets of parameters (γ and δ)
but, for a given k, both γk and δk are constrained to belong to the same mixture component
because there is only one model indicator, namely, α.

As compared to the MC3 approaches in Sections 3.1 and 3.2, the SSVS approach does not
require any additional parametric assumption. Model selection proceeds by iteratively
sampling γk,δk,β, and ξ from their appropriate conditional posterior distributions, then
updating each αk from a binomial distribution that depends on the current values of γk and δk
and on the prior distributions in (8) and (9). Note that while the inclusion of the residual
adjustment term ΣαkδkUik is primarily motivated by the discussion of γ-feedback in Section
2.4, this residual adjustment is required for α feedback in the SSVS approach so that p(αk =

1|Data) will be closer to one for variables with  large. Thus, unlike the MC3

approaches in Sections 3.1 and 3.2, the SSVS approach incorporates outcome information
into the PS model selection while also allowing flexible parametric specification. These
benefits come at the cost of some practical difficulties in implementation. Specifically, the
choice of hyperparameters for the mixture priors in (8) and (9) will affect which variables
are selected to have αk = 1, and SSVS with the likelihood in (3)–(4) can be computationally
expensive for large values of p. Full details appear in Web Appendix A. To simplify
presentation, we henceforth fix τγ = τδ = τ and cγ = cδ= c.

4 SIMULATIONS TO ILLUSTRATE PROPENSITY SCORE VARIABLE
SELECTION AND MODEL AVERAGING

Here we use simulated data to illustrate the approaches for Bayesian variable selection and
model averaging in Section 3. For all illustrations, data are generated as follows: For i = 1,2,
…, n, we simulate p covariates Ui = (Ui1,Ui2, …, Uip) from MVN(0, I), where I is the
identity matrix, and U0i is set to 1 to denote a model intercept. Xi is simulated from a
Bernoulli distribution with probability Xi = 1 specified with (1), with gx(·) set to Φ−1(·). We
set γ = (0.6, −0.6,0.6, −0.6,0,0, …, 0) to denote four covariates (U1,U2,U3,U4) associated
with assignment to treatment. Yi are simulated from Bernoulli distributions with probability

Yi = 1 specified with , with φ= (0.6, −0.6,0,0,0.6, −0.6,0,0, …, 0) to denote
four covariates (U1,U2,U5,U6) associated with Y. This implies a true value of Δ = 0 and that
the minimal model required to satisfy the assumption of strong ignorability is α* = (1,1,0,0,
…, 0). All scenarios entail p − 6 extraneous covariates that are not associated with X or Y.

We simulate 1000 replicated data sets under each of several simulation scenarios. We
analyze the simulated data with the three methods proposed in Section 3 and with three
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comparator methods: 1) a traditional sequential “kitchen sink” approach that includes all p
variables in the PS model; 2) a forward “stepwise on X” procedure that selects variables
according to a BIC criterion applied to the PS model only, without acknowledging
uncertainty in the variable selection; and 3) a “gold standard” approach that directly
estimates the correct data-generating mechanism without making use of the PS. All
Bayesian and approximately-Bayesian inferences are based on MCMC chains run for 10,000
iterations, with the first 2,000 discarded as burn in and every 10th sample saved for posterior
inference. MC3 analyses are run using R software (R Core Team, 2013), SSVS analyses are
programmed in C++, and all stated computing times are from a desktop computer running
Mac OS X with a 2.66GHz Intel Core i5 processor and 4GB RAM. The gold standard,
kitchen sink, and stepwise on X methods are fit using maximum likelihood, with the latter
methods treating the estimated PS as fixed in the outcome stage. Careful analysis with the
PS should generally involve checks of whether covariates are balanced between treated and
untreated observations. We forego balance checks until the data analysis of Section 5.

4.1 Bayesian PS model averaging when large p requires model selection
We first consider scenarios where the kitchen sink approach is unavailable because p is too
large relative to n, rendering some form of model selection necessary to estimate Δ with PS
methods. We simulate two such scenarios; one with n = 200, p = 100 and another with n =
500, p = 200. Recall that the fully-Bayesian MC3 approach requires the parametric
assumptions outlined in Section 3.1, namely, that h(PS(γ,α,Ui);ξ) denotes linear adjustment
for Φ−1(PS) and that residual adjustment is included for all except one variable having αk =
1 to prevent perfect colinearity. Also recall that these parametric assumptions reduce to a
Probit regression model that includes only main effects for selected variables and no PS,
which, in this case, corresponds to the true data-generating mechanism. For the
approximately-Bayesian MC3, SSVS, kitchen sink, and stepwise on X approaches, we
specify h(PS(γ,Ui);ξ) to adjust for five subclasses defined by quintiles of the PS, and
conduct residual adjustment for every variable included in the PS. We set (τ = 5,c = 200) for
the prior specification in (8) and (9) for the SSVS approach. Computing time for the analysis
of a single simulated dataset for the approximately-Bayesian MC3 (SSVS) approach with n
= 200, p = 100 was 58.7 (302.4) seconds. Analogous values for the n = 500, p = 200
scenario were 102.9 (2169.7) seconds. The computing time for the fully-Bayesian MC3

approach was similar to that of the approximately-Bayesian MC3 approach. The
computational demand of the SSVS approach precluded the ability to analyze all 1000
replicated data sets for the n = 500, p = 200 scenario; results for the SSVS analysis of this
scenario are based on analysis of 340 data sets.

Out of the 1000 data sets simulated under the scenario with n = 200, p = 100 (n = 500, p =
200), PS model estimates in 997 (916) were so unstable that estimated PS values were equal
to 0 for all observations with Xi = 0 and equal to 1 for all observations with Xi = 1, meaning
that any PS adjusted comparison is completely confounded and not interpretable as an
estimate of the causal effect. Thus, in these settings, model selection is necessary to estimate
causal effects with the PS. For the three proposed methods, Table 1 summarizes the average
marginal probability that variable k is included in the PS model (p(αk = 1|Data)) across the
simulated data sets, along with the frequency with which each variable is included in the
comparator methods. Figure 1 displays box plots of posterior mean estimates from the
Bayesian methods as well as point estimates from the comparator methods, along with bias
and mean squared error (MSE) for estimates from each method. Recall that the salient issue
for estimating a causal effect is whether the method averages estimates across models
including the variables that comprise α*, here, (U1,U2). From Table 1, we see that, in both
scenarios, all three proposed methods average causal estimates across models that virtually
always contain (U1,U2), the notable exception coming for the SSVS approach with n = 200,
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p = 100, which produces average values of p(αk = 1|Data) ≈ 0.80 for k = 1, 2. This implies
that SSVS in this scenario (and with these values of τ,c) estimates Δ with weighted averages
over models that frequently do not include all confounders, leading to the bias depicted in
Figure 1(a). For the n = 500, p = 200 scenario, all procedures always include (U1,U2), and
exhibit negligible bias. In both scenarios, all methods tend to average estimates across
models that include (U3,U4) that are only associated with X, with the SSVS analysis of the n
= 200, p = 100 scenario including these variables substantially less often than the other
methods. The distinction between the fully-Bayesian approaches and the approximately
Bayesian approach is highlighted in Table 1 by the average values of p(αk = 1|Data) for the
variables only associated with Y (U5,U6); the SSVS and fully-Bayesian MC3 approaches
average causal estimates across models that tend to include these variables, whereas the
approximately-Bayesian MC3 approach does not. The variables (U5,U6) are included in the
PS model least often with the stepwise on X procedure. The efficiency gain associated with
the inclusion of (U5,U6) is highlighted in Figure 1, where the SSVS and fully-Bayesian MC3

approach produce estimates with lower MSE than the approximately-Bayesian or stepwise
on X approaches, although recall that the fully-Bayesian MC3 approach requires very
restrictive parametric assumptions that happen to correspond to this simulated data
generation. The fully-Bayesian MC3 approach should not be expected to perform as well in
practice. In summary, in a setting where the kitchen sink approach is unavailable and a
choice regarding the PS model is required, the proposed methods can reliably select the
variables in α* and estimate the causal effect Δ with improved performance over a stepwise
on X procedure that selects a single PS model without acknowledging the associated
uncertainty.

4.2 Bayesian PS model averaging with moderate p
In settings with more moderate p relative to n, the kitchen sink approach can be used to
circumvent variable selection altogether. Here we simulate three such settings to investigate
whether our proposed methods can improve over the kitchen sink by averaging causal
estimates across models that include only relevant variables. Towards this end, we simulate
data with sample sizes n = 1000,500, and 200, while holding p fixed at 20. For these
simulations, we forego the restrictive fully-Bayesian MC3 approach and analyze the
simulated data with the approximately-Bayesian MC3 approach of Section 3.2 and with the
SSVS approach of Section 3.3, with (τ= 5,c = 200). For all methods in this section, we
specify h(PS(γ,Ui);ξ) to adjust for five subclasses defined by quintiles of the PS, and
conduct residual adjustment with ΣαkδkUik. Computing time for the analysis of a single
simulated dataset for the approximately-Bayesian MC3 (SSVS) approach was 100.6 (237.3),
69.3 (122.2), 51.2 (51.3) seconds for the n = 1000,500,200 scenarios, respectively.

Figure 2 displays the average marginal inclusion probabilities, p(αk = 1|Data) for k = 1,2,
…, 20, from the fully-Bayesian SSVS analysis and the approximately-Bayesian MC3

analysis across the 1000 replicated data sets with n = 200, 500, and 1000, compared with the
proportion of times each variable was selected with the stepwise on X procedure. The
Bayesian methods average causal estimates across models that always contain α*, with p(αk
= 1|Data) = 1.0 for k = 1,2 for all three scenarios, and the stepwise on X procedure always
selects these variables. All methods virtually always include (U3,U4) associated with X only,
with minimum average p(αk = 1|Data) = 0.95 for k = 3,4 from the Bayesian methods across
the three scenarios. The major departure between the methods comes in the omission of the
variables only associated with Y from PS models estimated with the approximately-Bayesian
MC3 approach and the stepwise on X approach, as compared to the SSVS approach that
exhibits minimum average p(αk = 1|Data) = 0.96 for k = 5,6 across all there scenarios.
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Figure 3 displays the relative MSE of posterior-mean estimates of Δ and estimates from the
stepwise on X and kitchen sink procedures, relative to estimates from the gold standard
approach. All methods exhibit negligible bias (results not shown). Figure 3 illustrates that
the SSVS approach produces estimates with MSE closest to the gold standard, and that the
stepwise on X procedure yields the largest MSE. While the efficiency loss associated with
including extraneous variables in the kitchen sink approach becomes more pronounced as
the sample size decreases, the kitchen sink estimates still exhibit lower MSE than the
approximately-Bayesian MC3 approach that averages causal estimates across models that
rarely include the variables associated with Y only (U5,U6).

Web Appendix D illustrates a simulation study with n = 200, p = 20 for which the Uk are
correlated. Again, the SSVS approach produces estimates with MSE closest to the gold
standard, and the stepwise on X approach exhibits the largest MSE. Unlike the uncorrelated
data setting depicted in Figure 3, the approximately-Bayesian approach produces estimates
with lower MSE than the kitchen sink approach in the correlated data setting of Web
Appendix D, and failure to always select the variables in α* leads to small bias in estimates
from from the SSVS, approximately-Bayesian MC3, and stepwise on X approaches.

These simulations illustrate that when p is moderate relative to n, the SSVS and
approximately-Bayesian MC3 methods for variable selection and model averaging can
outperform (in terms of MSE) a stepwise on X selection procedure and a kitchen sink
approach that circumvents variable selection entirely. Thus, we have shown that, in certain
situations, the additional uncertainty associated with variable selection and model averaging
can outweigh the drawbacks of a stepwise procedure or the inefficiency of extraneous
adjustment that comes as a consequence of automatically including every potential
confounder in the PS model.

5 COMPARING THE EFFECTIVENESS OF TREATMENTS FOR MALIGNANT
BRAIN TUMORS

Standard treatment for malignant brain tumors (most commonly malignant astocytomas such
as glioblastoma) often involves surgical excision of the tumor, but recent evidence suggests
that surgery is often foregone in elderly patients, especially those with poor preoperative
status and of particularly advanced age (Iwamoto et al., 2008). Due in part to the relatively
low incidence of these tumors, evidence as to whether elderly patients benefit from surgical
treatment is unclear, and large administrative databases have emerged as a key tool for
comparing the effectiveness of treatments for malignant brain tumors. We use data on 2,606
Medicare beneficiaries residing in the Northeastern United States (Massachusetts,
Connecticut, New Hampshire, Maine, Rhode Island, and Vermont) who were hospitalized
with a primary diagnosis of malignant brain neoplasm during 2000–2009 to compare the
effectiveness of surgical excision X = 1 vs. no surgery X = 0 for lowering the risk of
mortality within 1 year of diagnosis. To ensure that our study population did not include
patients with brain metastases of other cancers, this patient sample excludes patients with a
previous cancer diagnosis.

Table 2 summarizes the characteristics of patients who were treated with surgical excision (n
= 1118) and those who did not receive surgery (n = 1488). As expected, patients aged over
85 years were much less likely to receive surgery, and patient characteristics measured by
Hierarchical Condition Categories (Pope et al., 2004) capturing current or previous
comorbidities were different in the two groups, with surgical patients exhibiting fewer
comorbidities overall. An unadjusted comparison indicates that the rate of death within 1
year of hospitalization is 15.2% lower in surgical patients. We estimate the average causal
effect of surgery (vs. no surgery) with the approximately-Bayesian MC3 approach from
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Section 3.2, as well as with the fully-Bayesian SSVS approach from Section 3.3 (with τ= 5,c
= 1000). For both methods, we specify h(PS(γ,Ui);ξ) to adjust for five subclasses defined by
quintiles of the PS, and conduct residual adjustment within PS subclass for every covariate
included in the PS. As in our simulations, we specify Probit regression in the PS and
outcome models. For both methods, MCMC chains were run for 150,000 iterations,
discarding the first 50,000 as burn in and saving every remaining 10th sample for posterior
inference. Computing times were 2965.9, 11712.4 seconds for the approximately-Bayesian
MC3, SSVS procedure, respectively.

Covariate balance was assessed at each MCMC iteration by comparing covariate prevalence
between surgical and nonsurgical patients within PS subclass, using only the covariates in
the model at that iteration. Both methods similarly balanced all the covariates in Table 2
within PS subclass, with some age group imbalances persisting in the lowest PS subclass.
Detailed balance checks appear in Web Appendix B.

The approximately-Bayesian MC3 approach produced a posterior mean estimate of Δ̂ =
−0.119 and a 95% posterior interval (−0.151,−0.087). Table 3 displays the 10 models with
highest posterior support from this approach. Together, these 10 models comprise 34% of
the total posterior model support, meaning that 66% is spread across models not appearing
in Table 3. Every individual model not in Table 3 receives < 2% posterior support. Table 2
displays the marginal p(αk = 1|Data) for k = 1, …, 28, across all 228 models. These tables
indicate that the posterior estimate of Δ is a weighted average of estimates from models that
virtually always include patient age group, but also commonly involve presence of stroke,
dementia, functional disability, psychological disorder, and seizure disorder.

The fully-Bayesian SSVS analysis produced a similar causal estimate, with a posterior mean
Δ̂ = −0.122, with 95% posterior probability interval (−0.154,−0.090). Table 4 displays the 10
models with highest posterior support from the SSVS analysis. These 10 models comprise
97% of the posterior model support, and Table 2 displays the marginal p(αk = 1|Data) for k
= 1, …, 28. For the SSVS analysis, the posterior distribution of Δ is a weighted average of
estimates from models that always include patient age group and seizure disorder, with
substantial posterior support also distributed across models including renal failure, diabetes,
dementia, and chronic fibrosis.

Recall that these two methods differ in two important ways and do not converge to the same
stationary distribution. First, the approximately-Bayesian MC3 approach builds PS models
based only on covariate associations with X, whereas the fully-Bayesian SSVS approach
uses associations with both X and Y. Second, the approximately-Bayesian MC3 approach
includes variables on the basis of increases in the integrated likelihood term for the PS

model, whereas SSVS includes variables based on the estimated magnitude of  from
(7) and the specification of hyperparameters (τ,c). These differences are evident when
comparing the results from these two methods. For example, estimates of Δ from the
approximately-Bayesian MC3 method virtually never rely on a model that includes diabetes,
whereas diabetes appears in 68% of the models constructed with the fully-Bayesian SSVS
approach (see Tables 2 – 4). This likely occurs because diabetes is not predictive of having a
surgical excision, but is strongly related to death within 1 year of hospitalization. However,
comparison between the approximately and fully-Bayesian procedures does not always
follow so clearly. For example, history of stroke appears frequently in models estimated
with the approximately-Bayesian MC3 procedure (p(αk = 1|Data) = 0.28), but does not
appear in any model receiving posterior support from the SSVS procedure. Such an apparent
discrepancy could arise for several reasons. It is possible that, after adjusting for variables
that tend to appear in the SSVS analysis (e.g., chronic fibrosis), stroke is no longer related to
X or Y. As a rough guide from which to judge variable associations with Y, Web Appendix C
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augments Table 2 with point estimates, standard errors, and p-values from a Probit
regression model that does not include the PS but includes main effects for each of the 28
variables. Finally, it is important to note that the differences in implementation lead the MC3

approach to distribute support across a large set of models compared to the SSVS approach,
which concentrates 79% of the posterior mass at the top 3 models in Table 4. The
concentration of posterior mass on relatively few models with the SSVS approach is due to
the feature that SSVS uses more information in the data (e.g., information pertaining to Y),
and also to the specification of the hyper parameters (τ,c), which will generally affect which
variables are selected and how often; for a fixed value of τ, larger values of c distribute more
posterior support to models containing more covariates. The need to decide an appropriate
value of c highlights one practical difficulty for implementing the SSVS approach, although
results from analyses of these data with different values of c are not reported because causal
estimates remained virtually unchanged.

For comparison, a standard sequential kitchen sink approach produced a point estimate of Δ̂
= −0.115, with a 95% confidence interval of (−0.146,−0.084) based on 1000 parametric
bootstrap samples. In summary, all methods estimate a similar beneficial ACE of surgical
treatment for preventing death within 1 year of hospitalization that is attenuated as compared
to the simple unadjusted comparison.

6 DISCUSSION
For causal inference methods based on the PS, we have introduced Bayesian methods for
variable selection and model averaging to estimate causal treatment effects that can offer
improvement over standard PS approaches, especially when p is large and some form of
variable selection is required. Rather than condition inference on a single PS model, our
approaches average causal estimates across many different models that are supported by the
observed data.

Aside from notions of model averaging and model uncertainty, our proposed fully-Bayesian
procedures entail another important distinction with traditional approaches that select
variables based only on covariate associations with treatment assignment (X). The fully-
Bayesian approaches build PS models based in part on covariate associations with the
outcome (Y) as well, which is important in light of the well-documented result that including
outcome predictors in PS models can improve causal estimates (Rubin and Thomas, 1996;
Rubin, 1997; Brookhart et al., 2006). This feature of our approach also relates to the notion
of the “prognostic score” that balances covariates between treated and untreated units based
only on associations with Y (Hansen, 2008), although it remains unclear whether models for
the prognostic score and the outcome, conditional on the score, could be combined in a joint
likelihood for the type of Bayesian analysis pursued here.

Data-driven approaches to select important outcome predictors could be construed as in
violation of one philosophical motivation of the PS. Specifically, Rubin (2008) argues that
the PS is meant to approximate the design stage of a randomized study, and as such should
be constructed without any access to the outcome to ensure objective design decisions that
are completely separate from analysis decisions. It should be noted that the use of outcome
information in our fully-Bayesian approaches is completely automated, thus precluding the
selection of variables based on post-hoc knowledge of the estimated treatment effect. The
approximately-Bayesian strategy of Section 3.2 selects variables based only strength of
association with X, without regard to Y, and as such cannot be construed as violating the
separation of design and analysis decisions. However, at least in our simulation studies, the
approximately-Bayesian approach did not perform as well (in terms of MSE) as the fully-
Bayesian approaches, nor did it perform as well as the kitchen sink approach when p was
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moderate and the covariates were uncorrelated. This highlights the potential benefit of
including predictors of Y. One important limitation that our proposed methods share with
nearly all methods for selecting variables to include in the PS is that they will include those
that are strongly associated with X even if they are not at all associated with Y, and such
variables have been shown to reduce efficiency of causal estimates (Rubin, 1997; Brookhart
et al., 2006). Rubin (1997) argues that the efficiency loss of including such variables should
be relatively inconsequential if the variable is even weakly associated with Y. In general,
relative performance of the proposed and traditional methods will depend on the nature of
associations between covariates, treatment, and outcome.

One general feature of the proposed approaches is their reliance on parametric model
specifications for the PS and outcome models. This was most pronounced in the fully-
Bayesian MC3 approach of Section 3.1, which motivated the more flexible approaches of
Sections 3.2 and 3.3. Nonetheless, our proposed methods necessarily rely on model
specification more than modern machine-learning approaches to building PS models, such
as generalized boosted models (McCaffrey et al., 2004), that can model the relationships
between covariates and treatment assignment in a very flexible manner. In exchange for
parametric specification, our methods have the benefit of selecting variables based in part on
their association with Y, and also preclude the need to condition on a single PS model for
inference. Efforts to improve the parametric flexibility of our methods are warranted,
including exploration of approximations to the integrated likelihood that can circumvent the
restrictive parametric assumptions required for a fully-Bayesian MC3 analysis, possibly
along the lines of the Bayes factor approximations commonly used for generalized linear
models (Hoeting et al., 1999). Alternatively, the methods described here could serve as a
precursor step to define a reasonably-sized set of candidate variables for use in model-
averaged estimates that make use of more flexible parametric specifications.

We made use of two distinct computational strategies for Bayesian variable selection and
model averaging, both having relative merits and limitations. The MC3 approach is
computationally appealing because it relies on an expression of the likelihood with the
(possibly high dimensional) vector of model-specific coefficients integrated out, but
required restrictive parametric assumptions for a fully-Bayesian approach. In contrast, the
SSVS approach accommodates general likelihood expressions, but shrinks variables close to
zero rather than remove them from the model, entailing a heavy computational burden for
large p. Furthermore, the shrinkage is governed by hyperparameters that must be specified,
and different specifications can produce different results.

Modern decision-making in the health sciences and other fields increasingly relies on very
large observational data bases containing a wealth of covariate information, highlighting the
importance of issues regarding model uncertainty in PS methods. This is especially true in
comparative effectiveness investigations leveraging information in administrative data
bases, but could also prove integral in other “big data” applications that routinely deal will
very large numbers of potential confounding factors. However, we stress that our data-
driven approaches for variable selection and model averaging cannot replace careful
scientific thought. For example, we considered situations where all U were known to be pre-
treatment covariates, but, in general, particular attention should be paid to whether some
available variables are affected by treatment, leaving them inappropriate for PS adjustment.
Finally, our methods do not provide a means for adjusting for unmeasured confounding; we
assume that all confounders necessary to satisfy the assumption of ignorable treatment
assignment are an unknown subset of those available for analysis. This is especially relevant
in the results of our data analysis, where the Medicare data lacks disease-specific
information, thus presenting the possibility of unmeasured confounding.
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Appendix

A DETAILS OF THE MC3 APPROACHES FOR PROPENSITY SCORE
VARIABLE SELECTION AND MODEL AVERAGING
A.1 Prior distributions

The MC3 approaches of Sections 3.1 and 3.2 rely on prior specification for p(β,ξ,γ,δ,α),
which we factorize as p(α)p(γα|α)p(δα|α)p(β,ξ), where (γα,δα) denotes the components of
(γ,δ) included in model α. As noted in Section 3, we assume equal prior probability for all

possible α, . For p(γα|α), we assume a Normal distribution with mean 0 and

variance . For p(δα|α) we use a Normal distribution with mean 0 and variance

 for the fully-Bayesian MC3 approach, and a Normal distribution with
mean 0 and variance 102I for the approximately-Bayesian approach, where I is the identity
matrix. Here Uα represents the subset of U contained in α (with dimension n × pα), and Uα,Y
denotes the subset of Uα included for residual adjustment in the outcome model (with
dimension n × pα,Y). We henceforth consider λγ = λδ = λ. All analyses of simulated and
Medicare data assume λ = 4n. Furthermore, we assume p(β,ξ) follows a Normal distribution
with mean 0 and variance 102I.

A.2 MCMC algorithm for the fully-Bayesian MC3 approach

Variable selection with MC3 relies on an expression for  that governs the
probability of the MCMC chain transitioning from α to a neighboring model α′. For the
fully-Bayesian approach of Section 3.1, the integrated likelihood can be expressed as ∫ ∫
L(Y,X|U,γ,α,β,δ)p(γ|α)p(δ|α)p(α)p(β,ξ)dγdδ, with L(Y,X|U,γ,α,β,δ) as in (3)–(4). Note that
the resulting expression will also depend on ξ and β, as the appearance of these parameters
does not depend on α, but we omit this conditioning to simplify notation. Similarly, we omit
the prior distribution p(β,ξ) from the following expressions.

We follow Albert and Chib (1993) and specify a Probit link for both gx(·) and gy(·), which
allows allows an MCMC data-augmentation procedure that iteratively samples Normally-
distributed latent continuous data with unit variance such that the latent X* (Y*) are > 0
when X = 1(Y = 1), and < 0 otherwise. This is Assumption (i) of Section 3.1. Conditional on
simulated (X*,Y*), the integrated likelihood can be expressed as
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(10)

where X̃* = (X* − Uαγα) and Ỹ* = (Y* − β01 − βXX − h(PS(γ,α,,U);ξ) − Uα,Yδ). Note that
integration with respect to γ in (10) is relatively straightforward if h(PS(γ,α,U)) is chosen
such that the term in exp {·} remains quadratic in γ, because this will allow simplifications
relying on the Normal probability distribution function. If the term in exp {·} is not
quadratic in γ, closed-form integration in (10) will prove problematic. This motivates
Assumptions (ii) and (iii) in Section 3.1; specifying h(PS(γ,α,Ui);ξ) = ξ × ΣαkγkUik to
denote an outcome model that adjusts for Φ−1(PS(γ,α,Ui)) = ΣαkγkUik as a linear covariate
facilitates closed-form evaluation of (10) with respect to γ, and one covariate in α must be
removed from the residual adjustment term ΣαkδkUik to prevent perfect colinearity with the
ΣαkγkUik. This strategy implies that if Uα is of dimension n × pα, then Uα,Y will be the same
except for the removal of the intercept term and one covariate, resulting in pα,Y = pα − 2.

Accordingly, substituting h(PS(γ,α,U)) with ξ × (Uαγα) in (10) and integrating over γ and δ
yields:

(11)

where

, and .

The MC3 algorithm described in Section 3.1 is outlined as follows for iteration (t + 1),
considering current values of α(t), γ(t),δ(t),β(t),ξ(t),X*(t),Y*(t):

1. Propose α′ by adding or removing one term from α(t).

2.

Set α(t+1) = α′ with probability , where p(α|Data) is as in
(11). Set all elements of γ and δ not included in α(t+1) to 0.

3. Update (β(t+1),ξ(t+1)) from random-walk Metropolis step with values proposed from
a Normal distribution with mean (β(t),ξ(t)) and proposal variance 0.1I.

4. Update  from N(Mδ,Vδ), where Mδ = VδD̃.

5. Update  from N(Mγ,Vγ), where  and
recalculate the corresponding propensity score, Uαγα.

6. Simulate new X* from a truncated Normal distribution with mean Uαγα and
variance 1, and simulate new Y* from a truncated normal distribution with mean
β01 + βXX + ξUαγα + Uα,Yδ and variance 1, as in Albert and Chib (1993).
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A.3 Implied parameterization of outcome surface for the fully-Bayesian MC3 approach
Without loss of generality, consider α = (1,1, …, 1) to denote inclusion all p available
covariates. With assumptions (ii)–(iii), the linear term in the outcome model (2) can be
expressed as:

(12)

where, again without loss of generality, U1 is removed from the residual adjustment in
accordance with assumption (iii). Expression (12) can be rewritten as

, where , and  for k
= 2,3, …, p. This corresponds to an outcome model that is simply a reparameterization of a
model entailing an additive main effect term for every covariate, which is precisely the type
of parametric outcome model PS methods are meant to avoid.

A.4 MCMC Algorithm for the approximately-Bayesian MC3 approach
As laid out in Section 3.2, an approximately-Bayesian approach follows from adapting the
above strategy to update (α,γ) conditional on quantities that appear only in the PS model,
then update parameters (β,ξ,δ) conditional on (α,γ). This simplifies the expression for

 because of the simplified form of the integrated likelihood:

(13)

evaluation of which does not depend on h(PS(γ,α,Ui);ξ), β,δ or Y. Thus, the approximately-
Bayesian MC3 approach is outlined as follws:

1. Propose α′ by adding or removing one term from α(t).

2.

Set α(t+1) = α′ with probability , where p(α|Data) is as in (A.
4). Set all elements of γ and δ not included in α(t+1) to 0.

3.
Update  from .

4. Update (β,ξ,δα)(t+1) from N((Z̃′Z̃+(․1)2I)−1(Z̃′Y*), (Z̃′Z̃+(․1)2I)−1), where Z̃ is the
design matrix with columns representing an intercept, X,h(PS(γ,α,U)), and Uα,Y.

5. Simulate new X* from a truncated Normal distribution with mean Uαγα and
variance 1, and simulate new Y* from a truncated normal distribution with mean
β01 + βXX + ξh(PS(γ,α,U)) + Uα,Yδ and variance 1, as in Albert and Chib (1993).
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Figure 1.
Simulated scenarios where p is large relative to n: Boxplots of point estimates of Δ across
1000 simulated data sets with n = 500, p = 200 or n = 200, p = 100. “FB MC3” refers to the
fully-Bayesian MC3 approach of Section 3.1, “AB MC3” refers to the approximately-
Bayesian MC3 approach of Section 3.2, and “FB SSVS” refers to the fully-Bayesian SSVS
approach of Section 3.3. . *SSVS analysis of n = 500, p = 200 scenario based on analysis of
340 data sets.
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Figure 2.
Simulated scenarios where p = 20 and n = 200, 500, or 1000. Average values of p(αk = 1|
Data) for k = 1,2, …, 20, averaged across 1000 simulated datasets. “FB SSVS” refers to the
SSVS approach of Section 3.3, “AB MC3” refers to the approximately-Bayesian approach
of Section 3.2, and “Stepwise on X” refers to proportion of times each variable was selected
with the forward BIC procedure described in Section 4.
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Figure 3.
Simulated scenarios where p = 20 and n = 200,500, or 1000: Relative mean squared error
(MSE) of estimates of Δ (relative to the “gold standard” approach), averaged across 1000
simulated datasets. “FB SSVS” refers to the SSVS approach of Section 3.3 and “AB MC3”
refers to the approximately-Bayesian approach of Section 3.2.
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Table 2

Baseline characteristics (% experiencing) and 1-year mortality rate for patients with and without surgery for
brain tumor removal, along with estimated p(αk = 1|Data) for the fully-Bayesian SSVS and approximately-

Bayesian MC3 analyses of the Medicare data from the North-eastern US in 2000–2009

p(αk = 1|Data)

No Surgery (n = 1488) Surgery (n = 1118) SSVS AB MC3

Female 51.0 44.6 0.00 0.06

White 97.2 97.9 0.00 0.04

Congestive Heart Failure 5.0 2.6 0.00 0.10

Myocardial Inarction 1.3 0.9 0.00 0.01

Chronic Atherosclerosis 22.8 18.2 0.00 0.08

Respiratory Failure 1.1 1.2 0.00 0.01

Valvular Disease 6.5 5.4 0.00 0.01

Arrhythmia 7.2 4.7 0.03 0.02

Hypertension 63.2 60.5 0.00 0.01

Stroke 5.4 2.6 0.00 0.28

Cerebrovascular Disease 4.0 2.5 0.00 0.04

Renal Failure 2.7 1.2 0.11 0.05

COPD 10.0 10.7 0.00 0.02

Pneumonia 3.8 4.1 0.00 0.04

Diabetes 19.3 17.4 0.62 0.02

Dementia 15.2 9.5 0.33 0.68

Functional Disability 4.0 1.8 0.00 0.25

Peripheral Vascular Disease 2.0 1.3 0.00 0.02

Trauma in the Past Year 5.0 3.6 0.00 0.02

Substance Abuse 6.7 6.6 0.00 0.02

Major Psychiatric Disorder 5.4 3.2 0.00 0.35

Depression 8.5 7.2 0.00 0.02

Parkinsons/Huntingtons 2.2 1.4 0.08 0.03

Seizure Disorder 22.7 18.9 1.00 0.27

Chronic Fibrosis 1.5 0.8 0.58 0.05

Asthma 2.9 3.3 0.01 0.02

Age 65–74 37.1 52.3 (reference)

Age 75–84 43.1 41.9 1.00 0.99

Age 85+ 19.8 5.8 1.00 1.00

Death within 1 Year 85.6 70.4
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